organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(4-Methylphenyl)-1H-benzimidazole

Wen-Juan Shi* and Cheng-Xiang Ruan

Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, People's Republic of China Correspondence e-mail: swjuan2000@126.com

Received 14 May 2007: accepted 31 July 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.135; data-to-parameter ratio = 14.6.

In the title compound, $C_{14}H_{12}N_2$, the benzimidazole and tolyl groups are not coplanar, exibiting a dihedral angle of $27.5 (3)^{\circ}$. The structure is held intact through N-H···N hydrogen bonds and $\pi - \pi$ stacking interactions [perpendicular distance 3.504 Å and centroid-to-centroid distance 4.080 Å], displaying a two-dimensional supramolecular array.

Related literature

For related literature, see: Johnson (1976); Ma et al. (2006); Migawa et al. (1998); Porcari et al. (1998); Roth et al. (1997); Tamm (1957); Tamm & Seghal (1978).

Experimental

Crystal data

 $C_{14}H_{12}N_2$ $M_r = 208.26$ Orthorhombic, Pbca a = 9.0763 (10) Åb = 9.8053 (11) Åc = 24.628 (3) Å

V = 2191.8 (4) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 295 (2) K $0.40\,\times\,0.20\,\times\,0.16$ mm

Data collection

```
Bruker APEX area-detector
                                            9605 measured reflections
  diffractometer
                                           2133 independent reflections
Absorption correction: multi-scan
                                            1850 reflections with I > 2\sigma(I)
  (SADABS; Sheldrick, 1996)
                                            R_{\rm int} = 0.025
  T_{\min} = 0.970, T_{\max} = 0.988
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	146 parameters
$wR(F^2) = 0.135$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
2133 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots N2^i$	0.85	2.07	2.9151 (19)	171
Symmetry code: (i)	$-x + \frac{1}{2}, y - \frac{1}{2}, z$			

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank Jiangxi Science and Technology Normal University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RT2008).

References

Bruker (2002). SMART (Version 6.36A) and SAINT (Version 6.36A). Bruker AXS Inc., Madison, Wisconsin, USA.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Ma, H.-Q., Wang, Y.-L. & Wang, J.-Y. (2006). Heterocycles, 68, 1669-1673.

Migawa, M. T., Giradet, J. L., Walker, J. A., Koszalka, G. W., Chamberlain, S. D., Drach, J. C. & Townsend, L. B. (1998). J. Med. Chem. 41, 1242-1251. Porcari, A. R., Devivar, R. V., Kucera, L. S., Drach, J. C. & Townsend, L. B.

(1998). J. Med. Chem. 41, 1251-1262.

Roth, M., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Bukheit, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199-4207.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Tamm, I. (1957). Science, 126, 1235-1236.

Tamm, I. & Seghal, P. B. (1978). Adv. Virus Res. 22, 187-258.

supplementary materials

Acta Cryst. (2007). E63, o3688 [doi:10.1107/S1600536807037373]

2-(4-Methylphenyl)-1*H*-benzimidazole

W.-J. Shi and C.-X. Ruan

Comment

2-Substituted benzimidazoles have attracted considerable interest as intermediates in the development of molecules of pharmaceutical interest. Benzimidazole derivatives exhibit significant activity against several viruses such as HIV, herpes (HSV-1), RNA, influenza, and human cytomegalovirus (HCMV) (Tamm, 1957; Tamm & Seghal, 1978; Roth *et al.*, 1997; Migawa *et al.*, 1998; Porcari *et al.*, 1998). The objective of this study therefore was to synthesize and elucidate the crystal structure of a new benzimidazole compound.

A view of the molecule of (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1. The dihedral angle between the benzimidazole and tolyl portions of the title compound, (I), is 27.5 °. The molecules are linked into a linear chain through N—H…N hydrogen bonds interactions (N2…H1 2.072 Å, N1—H1…N2 170.8 °), as shown in Fig. 2. There exist π - π stacking interactions in adjacent linear chains, adjacent tolyl rings are exactly parallel, the perpendicular spacing of the rings is 3.504 Å, and the ring centroid-to-centroid distance is 4.080 Å. These π - π stacking interactions form a two dimensional supramolecular array.

Experimental

The title compound was synthesized according to the reported procedure (Ma *et al.*, 2006). *o*-Phenylenediamine (10 mmol) and *p*-Tolualdehyde (10 mmol) were mixed in DMF (30 ml) thoroughly, followed by the addition of KHSO₄ (3.4 mmol), heating and stirring for one hour. When the reaction was finished, the solution was cooled to room temperature. The reaction mixture was added dropwise with vigorous stirring into a mixture of Na₂CO₃ (3.4 mmol) and H₂O (250 ml). The precipitate was collected by filtration, and recrystalized from ethanol to form the brown block crystals of the title compound. Yield: 416.5 mg (20%).

Refinement

The H atoms were placed in calculated positions (aromatic C—H 0.93 Å and methyl C—H 0.96 Å; U $1.2U_{eq}C$) and were included in the refinement in the riding model approximation. The nitrogen-bound H atom was located and refined with an N—H distance restraint of 0.85 Å.

Figures

Fig. 1. *ORTEPII* (Johnson, 1976) plot of the title compound, with displacement ellipsoids drawn at the 30% probability level, and H atoms given as spheres of arbitrary radii.

Fig. 2. A view of title compound, showing the extended two-dimensional structure linked by N—H····N hydrogen interactions and π - π stacking interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level, and H atoms given as spheres of arbitrary radii.

2-(4-Methylphenyl)-1H-benzimidazole

Crystal data	
$C_{14}H_{12}N_2$	$F_{000} = 880$
$M_r = 208.26$	$D_{\rm x} = 1.262 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 2911 reflections
<i>a</i> = 9.0763 (10) Å	$\theta = 2.8 - 24.9^{\circ}$
<i>b</i> = 9.8053 (11) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 24.628 (3) Å	T = 295 (2) K
$V = 2191.8 (4) \text{ Å}^3$	Block, brown
Z = 8	$0.40 \times 0.20 \times 0.16 \text{ mm}$

Data collection

Bruker APEX area-detector diffractometer	2133 independent reflections
Radiation source: fine-focus sealed tube	1850 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
T = 295(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 11$
$T_{\min} = 0.970, \ T_{\max} = 0.988$	$k = -11 \rightarrow 4$
9605 measured reflections	$l = -30 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H-atom parameters constrained
$wR(F^2) = 0.135$	$w = 1/[\sigma^2(F_o^2) + (0.0639P)^2 + 0.6749P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.10	$(\Delta/\sigma)_{\rm max} < 0.001$

2133 reflections

 $\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$

146 parameters

Primary atom site location: structure-invariant direct methods Extinction correction: none

	x	У	z	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	0.21900 (15)	0.85838 (14)	0.35353 (6)	0.0377 (4)
N2	0.16814 (14)	1.08050 (14)	0.35983 (6)	0.0386 (4)
C1	0.26414 (18)	0.98288 (16)	0.37105 (6)	0.0352 (4)
C2	0.05379 (17)	1.01519 (17)	0.33254 (7)	0.0363 (4)
C3	-0.0747 (2)	1.06679 (19)	0.30950 (8)	0.0477 (5)
H3	-0.0977	1.1590	0.3120	0.057*
C4	-0.1665 (2)	0.9773 (2)	0.28295 (8)	0.0523 (5)
H4	-0.2523	1.0100	0.2670	0.063*
C5	-0.1337 (2)	0.8385 (2)	0.27942 (8)	0.0494 (5)
Н5	-0.1980	0.7810	0.2610	0.059*
C6	-0.00918 (19)	0.78515 (18)	0.30242 (7)	0.0445 (4)
Н6	0.0118	0.6924	0.3006	0.053*
C7	0.08437 (17)	0.87557 (17)	0.32862 (7)	0.0349 (4)
C8	0.40695 (17)	1.00359 (17)	0.39761 (7)	0.0369 (4)
C9	0.5242 (2)	0.9178 (2)	0.38676 (8)	0.0514 (5)
Н9	0.5111	0.8441	0.3635	0.062*
C10	0.6605 (2)	0.9398 (2)	0.40998 (9)	0.0557 (5)
H10	0.7378	0.8810	0.4019	0.067*
C11	0.68392 (19)	1.0476 (2)	0.44493 (8)	0.0478 (5)
C12	0.5668 (2)	1.1330 (2)	0.45579 (8)	0.0497 (5)
H12	0.5803	1.2065	0.4791	0.060*
C13	0.42976 (19)	1.11181 (18)	0.43277 (7)	0.0429 (4)
H13	0.3524	1.1706	0.4409	0.052*
C14	0.8329 (2)	1.0698 (3)	0.47036 (11)	0.0714 (7)
H14A	0.8284	1.0475	0.5083	0.107*
H14B	0.8612	1.1635	0.4662	0.107*
H14C	0.9042	1.0124	0.4528	0.107*
H1	0.2595	0.7809	0.3577	0.086*
Atomic displacement	nt parameters ($Å^2$)			

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters and isotropic displaceme	ıeters (Å ²)
--	--------------------------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0392 (8)	0.0252 (7)	0.0488 (8)	0.0010 (6)	-0.0021 (6)	-0.0011 (6)
N2	0.0376 (7)	0.0267 (7)	0.0513 (8)	-0.0004 (5)	-0.0035 (6)	-0.0013 (6)
C1	0.0384 (8)	0.0263 (8)	0.0410 (9)	-0.0015 (6)	0.0025 (7)	-0.0005 (7)
C2	0.0364 (8)	0.0285 (9)	0.0440 (9)	-0.0025 (6)	0.0002 (7)	0.0011 (7)
C3	0.0463 (10)	0.0342 (10)	0.0625 (12)	0.0031 (7)	-0.0092 (9)	0.0020 (9)
C4	0.0447 (10)	0.0510 (12)	0.0610 (12)	-0.0014 (8)	-0.0150 (9)	0.0056 (10)
C5	0.0501 (10)	0.0454 (11)	0.0528 (11)	-0.0134 (8)	-0.0090 (8)	-0.0005 (9)
C6	0.0501 (10)	0.0315 (9)	0.0518 (10)	-0.0063 (7)	-0.0021 (8)	-0.0016 (8)

supplementary materials

C7	0.0365 (8)	0.0282 (9)	0.0399 (9)	-0.0025 (6)	0.0026 (7)	0.0019 (7)
C8	0.0382 (8)	0.0295 (9)	0.0430 (9)	-0.0020(7)	-0.0007 (7)	0.0021 (7)
C9	0.0449 (10)	0.0441 (11)	0.0651 (12)	0.0054 (8)	-0.0048 (9)	-0.0164 (9)
C10	0.0394 (10)	0.0581 (13)	0.0697 (13)	0.0092 (8)	-0.0020 (9)	-0.0072 (11)
C11	0.0430 (10)	0.0499 (12)	0.0506 (11)	-0.0057 (8)	-0.0054 (8)	0.0060 (9)
C12	0.0532 (11)	0.0434 (11)	0.0525 (11)	-0.0043 (8)	-0.0098 (9)	-0.0067 (9)
C13	0.0439 (9)	0.0347 (10)	0.0502 (10)	0.0030 (7)	-0.0031 (8)	-0.0036 (8)
C14	0.0489 (12)	0.0831 (18)	0.0821 (16)	-0.0062 (11)	-0.0174 (11)	0.0000 (14)
Geometric parat	meters (Å, °)					
N1—C1		1 358 (2)	С6-	-H6	0.93	00
N1—C7		1.378 (2)	C8-	-C9	1.38	3 (2)
N1—H1		0.8500	C8-	-C13	1.38	5 (2)
N2—C1		1.323 (2)	C9–	-C10	1.37	9 (3)
N2—C2		1.392 (2)	C9–	-H9	0.93	00
C1—C8		1.466 (2)	C10		1.38	0(3)
C2—C3		1.392 (2)	C10	-H10	0.93	00
C2—C7		1.400 (2)	C11-		1.37	9 (3)
C3—C4		1.375 (3)	C11-		1.50	6 (3)
С3—Н3		0.9300	C12	C13	1.38	2 (2)
C4—C5		1.396 (3)	C12	—H12	0.93	00
C4—H4		0.9300	C13	—H13	0.93	00
C5—C6		1.368 (3)	C14	—H14A	0.96	00
С5—Н5		0.9300	C14	—H14B	0.96	00
С6—С7		1.387 (2)	C14	—H14C	0.96	00
C1—N1—C7		107.41 (13)	С9-	-C8-C13	118.	16 (16)
C1—N1—H1		129.3	C9–	-C8-C1	120.	67 (15)
C7—N1—H1		123.2	C13		121.	14 (15)
C1—N2—C2		105.01 (13)	C10	C9C8	120.	97 (18)
N2-C1-N1		112.65 (14)	C10	—С9—Н9	119.	5
N2—C1—C8		125.11 (14)	C8–	-С9—Н9	119.	5
N1—C1—C8		122.21 (14)	С9—	-C10-C11	121.	14 (18)
C3—C2—N2		130.84 (16)	С9—	-С10—Н10	119.4	4
C3—C2—C7		119.56 (15)	C11-	—С10—Н10	119.	4
N2—C2—C7		109.59 (14)	C12		117.	83 (17)
C4—C3—C2		118.00 (17)	C12		121.	60 (19)
С4—С3—Н3		121.0	C10		120.	57 (19)
С2—С3—Н3		121.0	C11-		121.	52 (18)
C3—C4—C5		121.50 (17)	C11-	—С12—Н12	119.	2
С3—С4—Н4		119.3	C13	—С12—Н12	119.	2
С5—С4—Н4		119.3	C12	C13C8	120.	39 (16)
C6—C5—C4		121.55 (17)	C12	—С13—Н13	119.	8
С6—С5—Н5		119.2	C8–	-С13—Н13	119.	8
С4—С5—Н5		119.2	C11-	—C14—H14A	109.	5
С5—С6—С7		116.98 (17)	C11-		109.	5
С5—С6—Н6		121.5	H14	A—C14—H14B	109.	5
С7—С6—Н6		121.5	C11-		109.	5
N1—C7—C6		132.22 (15)	H14	A—C14—H14C	109.	5

N1—C7—C2	105.35 (14)	H14B—C14—H14C	109.5
C6—C7—C2	122.40 (15)		
C2—N2—C1—N1	-0.80 (18)	C3—C2—C7—C6	0.0 (3)
C2—N2—C1—C8	177.07 (15)	N2—C2—C7—C6	-178.71 (15)
C7—N1—C1—N2	0.53 (19)	N2—C1—C8—C9	-150.60 (19)
C7—N1—C1—C8	-177.40 (14)	N1—C1—C8—C9	27.1 (2)
C1—N2—C2—C3	-177.71 (18)	N2-C1-C8-C13	27.3 (3)
C1—N2—C2—C7	0.76 (18)	N1-C1-C8-C13	-155.08 (17)
N2-C2-C3-C4	177.59 (18)	C13—C8—C9—C10	-0.5 (3)
C7—C2—C3—C4	-0.8 (3)	C1—C8—C9—C10	177.46 (18)
C2—C3—C4—C5	0.6 (3)	C8—C9—C10—C11	0.3 (3)
C3—C4—C5—C6	0.3 (3)	C9—C10—C11—C12	-0.2 (3)
C4—C5—C6—C7	-1.1 (3)	C9-C10-C11-C14	179.5 (2)
C1—N1—C7—C6	177.98 (18)	C10-C11-C12-C13	0.2 (3)
C1—N1—C7—C2	-0.02 (18)	C14—C11—C12—C13	-179.46 (19)
C5—C6—C7—N1	-176.77 (17)	C11—C12—C13—C8	-0.4 (3)
C5—C6—C7—C2	0.9 (3)	C9—C8—C13—C12	0.5 (3)
C3—C2—C7—N1	178.21 (15)	C1—C8—C13—C12	-177.42 (16)
N2-C2-C7-N1	-0.46 (18)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1···N2 ⁱ	0.85	2.07	2.9151 (19)	171
Symmetry codes: (i) $-x+1/2$, $y-1/2$, z.				

